PENINGKATAN KINERJA SISTEM MULTI AGEN DENGAN OPTIMALISASI ALOKASI BEBAN
Sari
ABSTRAK
Sistem multi agen merupakan sekumpulan agen yang saling berinteraksi dan berkomunikasi untuk melaksanakan suatu tujuan tertentu. Setiap agen akan melakukan kolaborasi dan berkoordinasi untuk meyelesaikan suatu job yang diberikan. Dalam menangani job yang didistribusikan oleh sistem ke setiap agen dapat saja terjadi ketidakseimbangan workload diantara agen-agen. Load balancing merupakan sebuah solusi ketika ketidakseimbangan workload terjadi. Sistem multi agen yang diusulkan merupakan metode load balancing yang dapat mengalokasikan workload ke setiap agen secara dinamis. Sistem multi agen terdiri dari agent worker yang bertugas dalam melakukan eksekusi job dan agent monitor yang bertanggung jawab dalam mengawasi kondisi agent worker dan mengalokasikan job kesetiap agent worker. Load balancing system dilakukan dengan pertimbangan tiga parameter yaitu kondisi load agent worker, antrian job agent worker dan penggunaan daya komputasi komputer dimana agent worker berada. Studi kasus yang diterapkan pada penelitian ini adalah enkripsi data dengan menggunakan algoritma AES (Advanced Encryption Standard). Hasil pengujian menunjukkan bahwa metode Distribusi Dinamis Berbasis Alokasi (DDBAB) Beban dapat meningkatkan kinerja sistem multi agen mencapai 37.85% dibandingkan dengan Distribusi Uniform (DU).
Kata Kunci: Sistem Multi Agen, Alokasi Beban, Komunikasi Agen, Enkripsi Data, AES.
ABSTRACT
Multi-agent system is a set of agents that interact and communicate to accomplish a specific purpose. Each agency will collaborate and coordinate to settle a given job. In dealing with jobs that are distributed by the system to each agent may be an imbalance of workload among agents. Load balancing is a solution when the workload imbalance occurs. The proposed multi-agent system is a load balancing method to allocate the workload to each agent dynamically. Multi-agent systems consist of a worker agent in charge of doing the job execution and monitor agent who is responsible for overseeing state worker agent and allocate jobs to each agent worker. Load balancing system is done with consideration of the three parameters, namely the condition of load agent worker, job queue worker agent and the use of computing power the computer where the agent is located worker. The case studies were applied in this research is data encryption algorithms using AES (Advanced Encryption Standard). The test results showed that the method of Dynamic Distribution Based Allocation (DDBAB) Expenses can improve system performance multi agency reached 37.85% compared to the Uniform Distribution (DU).
Keywords: Multi-Agent Systems, Allocation Load, Communications Agent, Data Encryption, AES
Teks Lengkap:
PDFReferensi
Adiwidya, B. M. D., 2010. Algoritma AES (Advanced Encryption Standard) dan Penggunaannya dalam Penyandian Pengompresian Data. [Online] [Accessed 8 april 2013].
Bellifemine, F., n.d. Java Agent DEvelopment Framework. [Online] Available at: http://jade.tilab.com/ [Accessed 12 October 2013].
Christophe de Canniere, A. B. a. B. P., 2006. An Introduction of Block Cipher Cryptanalysis. s.l., Proceedings of the IEEE.
Drogoul, A., Vanbergue, D. & Meurisse, T., 2003. Multi-Agent Based Simulation:
Where are the Agents ?. Lecture Notes in Computer Science, Volume Multi Agent Base simulation II, pp. 43-49.
Fabio Bellifemine, A. P. R., 2000. JADE – A FIPA-compliant agent framework. [Online] Available at: http://www.researchgate.net [Accessed 9 October 2013].
Fabio Bellifemine, G. C. a. D. G., 2007. Developing multiagent systems with JADE. New York: Wiley & Sons.
Gutierrez, C., Magarino, I. g. & Fernadez, R. f., 2011. Detection of Undesirable Communication Patterns in Multi-agent Systems. Engineering Aplications of Artificial Intelligence, pp. 103-116.
Isizoh A. N., O. S. O. A. O. C., 2012. Temperature Control System Using Fuzzy Logic. International Journal of Advanced Research in Artificial Intelligence, Volume 1, p. 3.
Lee, Y. J., Park, G. Y., Song, H. K. & Youn, H. Y., 2012. A Load Balancing Scheme for Distributed Simulation Based on Multi-Agent System. s.l., Sungkyunkwan University, pp. 613-618.
Leszczyna, r., 2004. Evaluation of Agent Platforms, Ispra, Italy: Institute for the Protection and security of the Citizen. 68.
M Azmi, Z. . R. et al., 2011. Performance Comparison of Priority Rule Scheduling Algorithms. International Journal of Grid and Distributed Computing, Volume Vol. 4, No. 3, p. September.
Manger, J., 2001. A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption Padding (OAEP) as Standardized in PKCS#1 v2.0. In Advances in Cryptology CRYPTO’01. Computer Sci-ence 2139, Issue Springer-Verlag, p. 230–238.
Rojas, R., 1996. Fuzzy sets and fuzzy logic. In: Neural Networks. berlin: Springer-Verlag, p. 289.
Selent, D., 2010. ADVANCED ENCRYPTION STANDARD. RIVIER ACADEMIC JOURNAL, 6(2).
Shin, S. Y., Lee, H. C., Song, s. K. & Youn, H. Y., 2009. A Load Balancing Scheme for Multi-Agent Systems based on Agent State and Load Condition.
Wyman, B., 2011. Understanding Encryption. Security Awareness , 8 july.
Zadeh, L. A., 2004. Fuzzy Logic Systems: Origin, Concepts, And Trends, UC Berkeley: Computer Science. Division Department of EECS.
Refbacks
- Saat ini tidak ada refbacks.